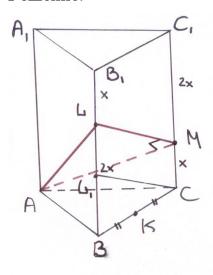
Решения к Административной контрольной работе "Расстояния и углы" Подготовлено Соломиным В.Н

28 апреля 2018 г.

a) Найдите b

Решение:



- 1) Для решение задачи рассмотрим $\triangle ABL$. Нетрудно заметить, что он прямоугольный (Прямая призма: $\angle ABL = 90^{\circ}$)
- 2) Тогда сразу же воспользуемся Теоремой Пифагора, из которой следует, что $AB^2 + BL^2 = AL^2$

Т.е. из условия (AB = 6 и BL = $\frac{2}{3}$ BB_1) получим, что $36 + \frac{4}{9}b^2 = AL^2$

- 3) Также ясно, что $\triangle ABL$ р/б в силу того, что AM = ML (Если сделать \parallel перенос, при котором M перейдет в C, то получившийся $\triangle L_1CB = \triangle AMC$)
- 4) Аналогично Теорема Пифагора для $\triangle AMC$ $36 + \frac{1}{9}b^2 = AM^2$
- 5)Учитывая п.3, получим из $\triangle AML$ по Теореме Пифагора.

 $ML^2 + AM^2 = AL^2$ r.e. $2AB^2 = AL^2$

Стоит сказать задумчивому читателю, что нетрудно заметить прямоугольность (По условию $\angle AML = 90^\circ$)

Таким образом, из предыдущих пунктов:

$$36 + \frac{4}{9}b^2 = 72 + \frac{2}{9}b^2$$

Откуда ответ: $b = 9\sqrt{2}$

b) Найдите угол между прямой LM и плоскостью ABC

Решение:

Способ 1

Ответ очевиден: 90° .

Легко заметить, что $AK \perp BB_1C$, хотя бы в силу того, что

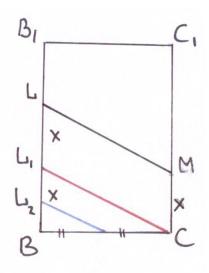
 $AK \perp BC$ (как высота р/с \triangle -ка)

 $AK \perp BB_1$ (т.к. призма правильная)

Тогда, т.к. $BC \times BB_1$, выходим на признак \bot прямой и плоскости.

Однако, если этот способ не угадывается, то отчаиваться не стоит, обратимся к способу 2.

Способ 2



1) Вынесем прямоугольник BB_1C_1C (Напоминаю,
что призма прямая) и сделаем д/п : $LL_1={\bf x}$

Тогда легко заметить, что LL_1CM - \parallel -м ($LL_1=\mathrm{MC}=\mathrm{x};\ LL_1\parallel\mathrm{MC})$

Ну, а известно, что у \parallel -ма противоположные стороны равны, тогда $L_1C=LM=\sqrt{\frac{1}{9}*b^2*9+36}=\sqrt{54}=3\sqrt{6}$ (Это из Теоремы Пифагора для \triangle $BL_1C)$, т.е. , подставляя в получим нужное)

2) Снова сделаем д/п
$$KL_2C$$
 - ср. линия \triangle -ка BL_1C , тогда по св-ву: $L_2K=\frac{1}{2}L_1C=\frac{3}{2}\sqrt{6}$

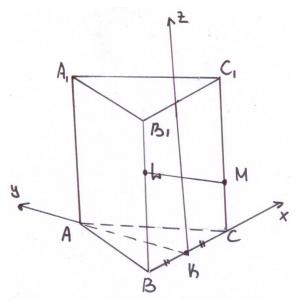
3)
Рассмотрим
$$\triangle$$
-к AL_2K : BK = 3; $L_2B=\frac{1}{2}L_1B$ (как в п.2) = $\frac{1}{6}b=\frac{3}{2}\sqrt{2}$
Тогда AL_2 по Теореме Пифагора из \triangle -ка AL_2B : $AL_2=\sqrt{BL_2^2+AB^2}=\sqrt{\frac{9*4}{2}+36}=\frac{9}{\sqrt{2}}$

4)Выйдем на определение
$$\angle$$
AK;LM (в силу $L_2K \parallel LM) = \angle L_2KA$

$$\cos\angle L_2KA=rac{KL_2^2+AK^2-L_2A^2}{2ABL_2A}=rac{rac{9*6}{4}+27-rac{81}{2}}{2rac{3*\sqrt{6}}{2}*3\sqrt{3}}=0$$
 Тогда незамедлительно $\angle L_2KA=90^\circ$

Ясно, что
$$AK = \frac{\sqrt{3}}{2}*AB$$
 (св-во р/с \triangle -ка) (L_2K п.2 , L_2A п.3)

Способ 3



Введем ситстему координат как показано на рисунке с соответствующими осями.

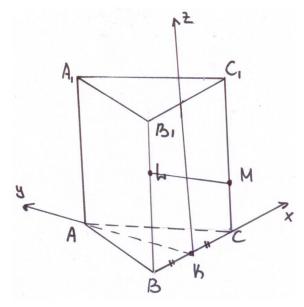
Тогда распишем все нужные координаты $L(-3;0;6\sqrt{2})$ $M(3;0;3\sqrt{2}$ $A(0;3\sqrt{3};0)$ Думаю, что все они очевидны, опираясь на способ 2.

$$\overrightarrow{LM}(6;0;-3\sqrt{2})$$

$$\overrightarrow{KA}(0;3\sqrt{3};0)$$

$$\overrightarrow{KA}*\overrightarrow{LM}=6^*0+0^*3\sqrt{3}-3\sqrt{2}*0=0$$
 t.e. $\overrightarrow{LM}\bot\overrightarrow{KA}$

c) Найдите угол межу прямой LM и плоскостью ABCСпособ 1

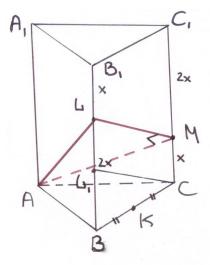


Воспользуемся системой координат как в пункте b)

Заметим, что нормаль \overrightarrow{n} имеет координаты (0;0;1) (часть BB_1) Тогда $|\cos\overrightarrow{n};\overrightarrow{LM}|=|\frac{\overrightarrow{n}*\overrightarrow{LM}}{|\overrightarrow{n}|*|\overrightarrow{LM}|}|$

Напомню, что LM знаем из п.а., \overrightarrow{LM} из предыдущего п.с. Тогда $|\cos\overrightarrow{n};\overrightarrow{LM}|=|\frac{-3\sqrt{2}}{1*\sqrt{54}}|=|\frac{3\sqrt{2}}{3\sqrt{6}}|=\frac{1}{\sqrt{3}}$ Не забываем, что $\angle LM;ABC=\frac{\pi}{2}-\arccos\frac{1}{\sqrt{3}}=\arcsin\frac{1}{\sqrt{3}}$

Ответ: $\arcsin \frac{1}{\sqrt{3}}$



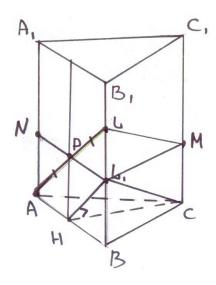
Действуя по классическому сценарию, получим, что BC - это проекция LM на ABC. (Ну это очевидно, потому что призма прямая)

Тогда $\angle L_1CB$ -искомый, потому что $CL_1 \parallel LM$ (выходим на определение) Не забываем, что все нужное посчитано в п.а. , тогда $\sin \angle L_1CB = \frac{L_1B}{L_1C} = \frac{\frac{1}{3}*9\sqrt{2}}{3\sqrt{6}} = \frac{1}{\sqrt{3}}$

Ответ: $\arcsin \frac{1}{\sqrt{3}}$

В принципе можно решать через tg Дальнейшие рассуждения схожи, их оговаривать отдельно не будем.

d) Найдите угол межу прямой LM и плоскостью A_1BA Способ 1



1) Для решения этой задачи воспользуемся идеей подмены угла: Т.к. $CL_1 \parallel LM$ (из пункта c)) , то $\angle LM$; $ABA_1 = \angle L_1C$; ABA_1

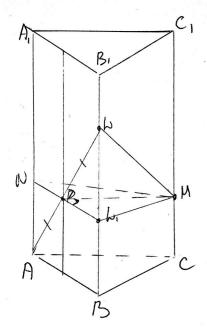
2) Сделаем д/п: $CH\bot LM$, тогда из рассуждений способа 1 пункта b) следует, что $CH\bot AA_1B_1$, т.е. L_1H - это проекция CL_1 на AA_1B_1 Таким образом, легко заметить, что $\angle CL_1H$ - искомый

3) Найдем этот угол по Th cos : $\cos \angle CL_1H = \frac{CL_1^2 + L_1H^2 - HC^2}{2CL_1*L_1H} = \frac{54 + 27 - 27}{2*3\sqrt{6}*3\sqrt{3}} = \frac{54}{9*6\sqrt{2}} = \frac{1}{\sqrt{2}}$ Стоит заметить, что CL_1 была посчитана в п.b способ 2 и HC там же.

Подсчет L_1H : Рассмотрим $\triangle BLA$, в котором AH=HB; $BL_1=L_1L$ по построению (напомню, что $\triangle CBA$ - р/с, а HC - медиана по построению), т.е (по признаку) L_1H - ср.линия $\triangle BLA$, т.е. $L_1H=\frac{1}{2}AL=3\sqrt{3}$

Таким образом, $\angle LM$; $ABA_1 = 45^{\circ}$

Однако есть более простой способ

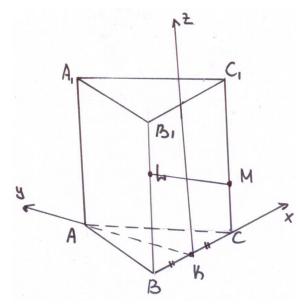


1) Рассмотрим медиану MP р/б $\triangle ALM$ (равнобедренность оговаривается в п.а), которая также является высотой

Тогда $MP \perp L_1P$ (где L_1P - ср.линия $\triangle ALB$, т.к. P - середина AL по построению), т.к. ML = MN (в силу д/п N: NA = x) , тогда $\triangle NL_1M$ - p/б, в котором MP - медиана из очевидных соображений, значит она является высотой

2) Таким образом, $MP\bot AL$; $MP\bot PL_1$ и $PL_1\times AL$, т.е. по признаку $MP\bot AA_1B_1$ Значит PL - проекция ML и $\angle PLM=45^\circ$ (Стоит напомнить, что из п.а. $\triangle MNL$ - р/б и прямоугольный)

Не стоит забывать и про метод координат



Используя этод способ, можно также быстро подобраться к итоговому результату. Будем действовать аналогично п.с.

Опишем кратко важные величины : нормаль \vec{n}_1 к AA_1B_1 , ясно ,что $\vec{n}_1 = \overrightarrow{CH}$

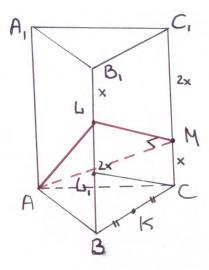
$$\mathrm{H}(-\frac{3}{2};\frac{3\sqrt{3}}{2};0)$$
, C(3;0;0), тогда $\overrightarrow{CH}(-\frac{9}{2};-\frac{3\sqrt{3}}{2};0)$

Таким образом
$$|\cos\overrightarrow{LM};\overrightarrow{CH}|=|\frac{\overrightarrow{LM}*\overrightarrow{CH}}{|\overrightarrow{LM}|*|\overrightarrow{CH}|}|=|\frac{6*(-\frac{9}{2})}{\sqrt{54}*\sqrt{27}}|=|\frac{27}{\sqrt{27}*\sqrt{27}*\sqrt{2}}|=\frac{1}{\sqrt{2}}$$

Все величины были посчитаны в предыдущих способах.

Таким образом получим ответ: $\angle 45^{\circ}$

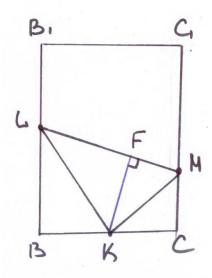
е) Найдите расстояние между прямыми AK и LM



1) Т.к. поиск общего перпендикуляра здесь довольно затруднителен, то спроецируем прямые АК и LM на плоскость BB_1C_1

Тогда АК перейдет в К, т.к. $AK \perp BB_1C_1$ (аналогичные рассуждения п.b способ 1), а LM перейдет сама в себя

Таким образом (по свойству) искомое расстояние есть расстояние от K до прямой LM



2) Пусть $KF \perp LM$ тоогда $S_{KLM} = S_{BLM} - S_{KLB} - S_{KCM} = \frac{LB + MC}{2}BC - \frac{LB * BK}{2} - \frac{KC * MC}{2} = \frac{1}{2}(BCBB_1 - BK(LB + MC))$ (площадь трапеции и треугольников) (интересно вынести за скобки и не подставлять)

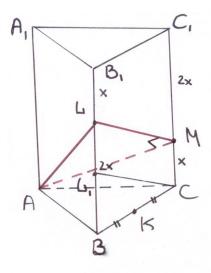
Тогда, т.к. $LB+MC=BB_1$; BK=KC (условие), получим : $\frac{1}{2}(BCBB_1-BK(LB+MC))=\frac{1}{2}(BCBB_1-BKBB_1)=\frac{1}{2}(BB_1(BC-BK))=\frac{1}{2}(BB_1BK)=\frac{1}{2}9\sqrt{2}*3=\frac{27\sqrt{2}}{2}$

Тогда, т.к. $S = \frac{ha}{2} = \frac{27\sqrt{2}}{2}$, то $h = KF = 3\sqrt{3}$

Ответ: $3\sqrt{3}$

f) Найдите угол между плоскостями *ALM* и *ABC*

Способ 1



1) Казалось бы, самый простой способ нахождения угла между этими плоскостями - это обращение к формуле: $S_0 * \cos \alpha = S$, где α - угол между плоскостью сечения и плоскостью основания

Таким образом, в нашей терминологии - это $S_{ALM}*\cos\angle ALM; ABC=S_{ABC}$

 $S_{ALM} = \frac{1}{2}\sqrt{54}\sqrt{54} = 27$ (АМ и LM посчитаны ранее в п.b) $S_{ABC} = \frac{\sqrt{3}}{4}a^2 = 36\frac{3}{4} = 9\sqrt{3}$

Тогда $\cos \angle ALM$; $ABC = \frac{9\sqrt{3}}{27} = \frac{1}{\sqrt{3}}$

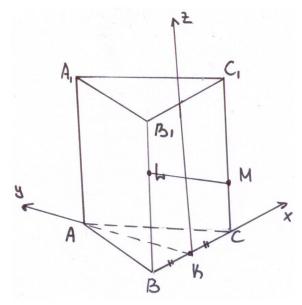
Но если обратиться к п.d, то можно заметить способ интереснее

Способ 2

1) Можно заметить, что $AL \parallel HL_1$ и $ML \parallel CL_1$, тогда по признаку \parallel плоскостей, получим, что $ALM \parallel HL_1C$ и мы снова можем подменить угол : $\angle ALM; ABC =$ $\angle HL_1C;ABC$

 $2)HL_1C\cap ABC=HC$, также $HL_1\perp HC$ (ранее было док-но, что $\triangle HL_1C$ - прямоугольный), также $HB\bot HC$, т.е. по определению $\angle L_1HB$ - линейный при ДУ L_1HCB

3)tg $L_1HB=\frac{L_1B}{HB}=\frac{3\sqrt{2}}{3}=\sqrt{2}$ Таким образом ответ: $\arctan\sqrt{2}$



Также можно решить, используя метод координат

1)Введем систему координат, как показано на рисунке. Нашей задачей будет поиск угла между нормалями к данным плоскостям.

2)В силу того, что ABC совпадает с XOY, то $\vec{n}_1(0;0;1)$ Все данные берем из пунктов ранее: $A(0;3\sqrt{3};0); L(-3;0;6\sqrt{2};M(3;0;3\sqrt{2})$

3) Уравнение плоскости ALM : ax + by + cz + d = 0

$$\begin{cases} \mathbf{L} : -3\mathbf{a} + 6\sqrt{2}c + d = 0 \\ \mathbf{M} : -3\mathbf{a} + 6\sqrt{2}c + d = 0 \\ \mathbf{A} : 3\sqrt{3}b + d = 0 \end{cases} \begin{cases} -3\sqrt{3} = d \\ -9\sqrt{2}c = 2d \\ 3\sqrt{3}b = d \end{cases}$$

Уравнение плоскости , сразу сокрощая на d: $\frac{x}{9}+\frac{y}{3\sqrt{3}+\frac{\sqrt{2}}{9}-1=0}$ т.е. $\vec{n}_1(\frac{1}{9};\frac{1}{3\sqrt{3};\frac{\sqrt{2}}{9}}$

4) Полностью аналогичные рассуждения для AKL: $K(0;0;0); L(-3;0;6\sqrt{2}$ ax+by+cz+d=0

$$\begin{cases} L: -3a + 6\sqrt{2}c + d = 0 \\ M: 3a + 3\sqrt{2}c + d = 0 \\ A: 3\sqrt{3}b + d = 0 \end{cases} \begin{cases} -9a = d \\ -9\sqrt{2}c = 2d \\ 3\sqrt{3}b = d \end{cases}$$

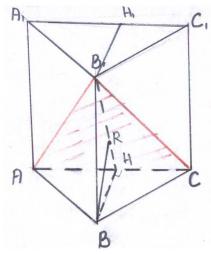
Уравнение плоскости , сразу сокрощая на d: $\frac{x}{9} + \frac{y}{3\sqrt{3}} + \frac{z\sqrt{2}}{9} - 1 = 0$ т.е. $\vec{n}_1(\frac{1}{9};\frac{1}{3\sqrt{3}};\frac{\sqrt{2}}{9})$

5)
$$|\cos \angle(\vec{n}_1; \vec{n}_2)| = |\frac{\vec{n}_1 * \vec{n}_2}{|\vec{n}_1| * |\vec{n}_2|}| = \frac{\frac{\sqrt{2}}{9}}{\frac{1}{81} + \frac{\sqrt{1}}{27} + \frac{\sqrt{2}}{81}} = \frac{\sqrt{3}}{3}$$

T.e. $\cos \angle(AML; AKL) = (\pi - \cos \angle(\vec{n}_1; \vec{n}_2)) = \arccos \frac{1}{\sqrt{3}}$

g) Найдите расстояние от B до AB_1C

Способ 1



1) $\mathsf{Я}$ сно, что призма симметрична относительно плоскости BB_1H_1 , где BH,B_1H_1 - высоты оснований

Поэтому \perp из В на плоскость AB_1C находится в BB_1H_1

- 2) Сделаем д/п: $BR\bot HB_1$, т.к. $AC\bot BB_1H_1$, а $BR\subset BB_1H_1$, то $BR\bot AC$ Тогда $BR\bot$ -на двум пересекающимся прямым в плоскости AB_2C и значит \bot самой плоскости.

$$BR = \frac{BB_1BH}{B_1H} = \frac{9\sqrt{2}3\sqrt{3}}{3\sqrt{2}1} = \frac{9\sqrt{2}}{\sqrt{7}} = 3\sqrt{21}$$

3) Найдем высоту $\triangle BHB_1$ - прямоугольного: $BR=\frac{BB_1BH}{B_1H}=\frac{9\sqrt{2}3\sqrt{3}}{3\sqrt{2}1}=\frac{9\sqrt{2}}{\sqrt{7}}=3\sqrt{21}$ Ясно, что $B_1H^2=BH^2+BB_1$ (по Теореме Пифагора) , все остальные величины высчитывались ранее.

Otbet: $3\sqrt{21}$

Способ 2

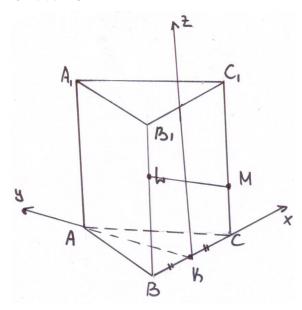
1) Рассмотрим пирамиду B_1ABC с вершиной B_1 . Ее объем равен $V_{B_1ABC} = \frac{1}{3}S_{ABC}BB_1$ $(BB_1$ - высота пирамиды)

- 2) С другой стороны можно завалить пирамиду на основание AB_1C . Тогда В будет вершиной пирамиды и $V_{B_1ABC}=\frac{1}{3}S_{AB_1C}h$, где h искомое расстояние.
- 3) Тогда воспользуемся законом сохранения объема: V=const, те $h=\frac{S_{ABC}BB_1}{S_{AB_1C}}=\frac{9\sqrt{2}*9\sqrt{3}}{\frac{1}{2}*6*3\sqrt{21}}=3\sqrt{21}$

Здесь все величины, кроме S_{AB_1C} , посчитаны ранее. Однако $S_{AB_1C}\frac{1}{2}HB_1AC$, тут уже все известно.

И ,наконец, ничего не мешает применить метод координат

Способ 3



Мы можем воспользоваться формулой расстояния от точки до плоскости в пространстве:

1)Для этого нам нужно найти уравнение плоскости

Т.к. мы неоднократно вводили систему координат ранее, то опустим поиск координат точек:

 $A(0; 3\sqrt{2}; 0); C(3; 0; 0); B_1(-3; 0; 9\sqrt{2})$

Таким образом, составим уравнение плоскости AB_1C , иходя из общего уравнения ax + by + cz + d = 0

$$\begin{cases} 3\sqrt{3}b + d = 0\\ 3a + d = 0\\ -3c + 9\sqrt{2}c + d = 0 \end{cases}$$

Откуда незамедлительно:

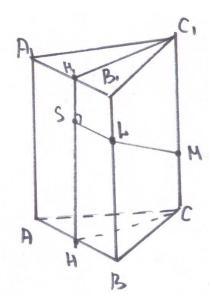
$$\begin{cases}
-3\sqrt{3}b = d \\
-3a = d \\
-9\sqrt{2}c = 2d
\end{cases}$$

Т.е. уравнение плоскости: $\frac{x}{3} + \frac{y}{3\sqrt{3}} + \frac{\sqrt{2}z}{9} - 1 = 0$ (Подставили и поделили на d)

Тогда, исходя из фрмулы $\frac{|ax_0+by_0+cz_0+d|}{\sqrt{a^2+b^2c^2}}$ и B(-3;0;0), получим $\frac{|-1-1|}{\sqrt{\frac{1}{9}+\frac{1}{27}+\frac{2}{81}}}=\frac{2}{\sqrt{\frac{14}{81}}}=3\sqrt{2}1$

h) Найдите расстояние от AB до LM

Способ 1



1) Поиск перпендикуляра также затруднителен как и в п.е.

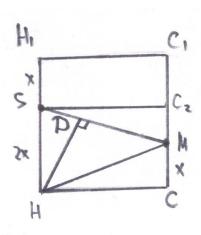
Тогда попробуем найти плоскость, на которую одна из прямых проецируется в точку, а другая перейдет в прямую.

Конечно же плоскость \bot -ю прямой AB подобрать легче. Это плоскость CHH_1 , где H, H_1 - все также высоты оснований. Прямая AB перейдет в H , а ML в MS, где $LS \parallel BH$, а значит $LS\bot HH_1C_1$ ($HB\bot HH_1C_1$ по свойству призмы).

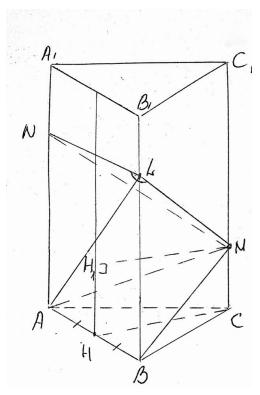
Таким образом, MC - проеция BL на плоскость HH_1C_1

2) Из п.1 следует, что $\rho(AB;LM)=\rho(H;MS)$

Сделаем выносной рисунок:



$$S_{SMH}=\frac{1}{2}HD*SM=\frac{1}{2}CH*SH$$
 ; $SM=\sqrt{HC^2+\frac{1}{9}b^2}=\sqrt{27+18}=3\sqrt{5}$ (Теорема Пифагора для \triangle -ка SM_1M $HD=\frac{CHSH}{SM}=\frac{\frac{2}{3}9\sqrt{2}*3\sqrt{3}}{3\sqrt{5}}=\frac{18\sqrt{6}}{3\sqrt{5}}=\frac{6\sqrt{6}}{\sqrt{5}}=\frac{6\sqrt{30}}{5}$ (Легко заметить ,что $SH=M_1C=\frac{2}{3}b$ (смотри п.2 выше). Остальные величины посчитаны ранее) Ответ: $\frac{6\sqrt{30}}{5}$



1) Также можно решить эту задачу, если вспомнить замечательную формулу для объе-

ма тетраэдра: $V = \frac{1}{6} * ab * \rho(a; b) \sin(a; b)$

2)Здесь все довольно просто: будем искать пошагово нужные нам величины. Для начала найдем объем тетраэдра V_{MALB} : т.к. из пунктов ранее $CH \perp ABA_1$, тогда д/п из М $MH_1 \parallel CH$ - это высота h тетраэдра, $CH=3\sqrt{3}$ (посчитана ранее). $S_{ALB}=\frac{1}{2}LB*AB=6*\frac{2}{3}b=6*\frac{2}{3}*9\sqrt{2}=18\sqrt{2}$ Тогда $V=\frac{1}{3}hS=\frac{1}{3}*18\sqrt{2}*3\sqrt{3}=18\sqrt{6}$

$$S_{ALB} = \frac{1}{2}LB * AB = 6 * \frac{2}{3}b = 6 * \frac{2}{3} * 9\sqrt{2} = 18\sqrt{2}$$

Тогда
$$V = \frac{1}{3}hS = \frac{1}{3}*18\sqrt{2}*3\sqrt{3} = 18\sqrt{6}$$

Теперь найдем $\sin(a;b)$: Для этого сделаем \parallel -ный перенос AB в точку L, т.е. д/п $LN \parallel$ AB, тогда по свойству $\angle LM$; $AB = \angle LM$; LN

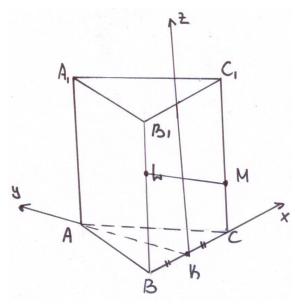
Рассмотрим \triangle -к NLM - p/6: NM = LM (рассуждения такие же как в п.а для доказатеьльства р/б-ти)

По Th cos : $\cos \angle NLM = \frac{LN^2 + LM^2 - NM^2}{2NLML} = \frac{36 + 54 - 54}{2*\sqrt{54}*6} = \frac{3}{\sqrt{54}}$ (Стоит сказать, что все вел-ны посчитаны ранее, кроме NM, но в силу р/б-ти NM = ML

Тогда
$$\sin \angle NLM = \sqrt{1 - \cos \angle NLM^2} = \sqrt{1 - \frac{9}{54}} = \sqrt{\frac{45}{54}} = \frac{3\sqrt{5}}{\sqrt{54}}$$

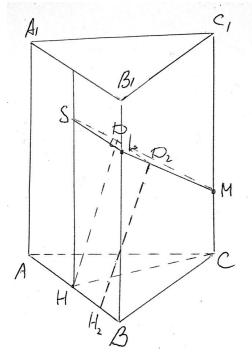
3)Из рассуждений выше следует, что
$$\rho(a;b) = \frac{6V}{ab\sin(a;b)} = \frac{6*18\sqrt{6}}{6*\sqrt{54}*\frac{3\sqrt{5}}{\sqrt{54}}} = 6\frac{\sqrt{6}}{\sqrt{5}} = \frac{6\sqrt{30}}{5}$$

Способ 3



Ну и нельзя забывать про МК:

1)Введем систему координат, как показано на рисунке. Тогда введем векторы, лежащие на данных прямых и вектор, перпендикулярный им, концы которого лежать на двух исходных. Тогда найдем координаты: C(0;0;0)



Построим общий \bot и вычислим его:

1)Сделаем д/п D: $HD\bot SM$ (все обозначения из прошлых способов), тогда если провести $DD_1 \parallel SL \parallel HB$ и построить $D_1H_2 \parallel DH$, то получим общий \bot , т.к. $DH\bot SLM$ ($DH\bot SM, DH\bot SL$, т.к. $DH\bot AB$, а $SL \parallel AB, SM \times SL$, т.е. выходим на признак) Ну а то, что $DH\bot AB$ сомнений не вызывает.

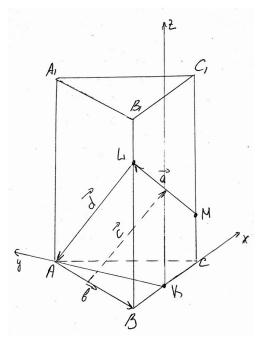
2)Посчитать этот \bot легко из \triangle -ка SHM (ясно, что $DH = D_1H_2$, в котором известно все, кроме HM, которую легко посчитать из прямоугольного \triangle -ка HMC: по Th Пифагора $HM = \sqrt{HC^2 + CM^2} = \sqrt{27 + 18} = \sqrt{45} = 3\sqrt{5}$ Тогда по Теореме сов найдем $\angle SHM = \frac{72 + 45 - 45}{2*\frac{2}{3}*9\sqrt{2}*3\sqrt{5}} = \frac{2}{\sqrt{10}}$

Тогда $\sin \angle SHM = \frac{\sqrt{3}}{\sqrt{5}}$

В таком случае $S_{HSM} = \frac{1}{2}SHMH * \sin \angle SHM = \frac{1}{2}*6\sqrt{2}*3\sqrt{5}*\frac{\sqrt{3}}{\sqrt{5}} = 9\sqrt{6}$

Также можно посчитать площадь через h=DH, т.е. $S=\frac{1}{2}DH*SM=9\sqrt{6},$ отсюда $DH=\frac{6\sqrt{30}}{5}$

Но без предыдущего решения трудно вообще осознать, где же находится общий \bot . Есть ли более универсальный способ?



Конечно есть. Воспользуемся простыми соображениями. Есть 2 вектора, лежащих на скрещивающихся прямых. Нам необходимо найти кооэфициенты вектора 1-го им обоим, концы которого содержат данные векторы. Таким образом, как только мы найдем его коэфициенты, то сумеем найти и его длину. Это и будет искомое расстояние между скрещивающимися прямыми.

Тогда должны быть выполнены следущие условия.

$$\begin{cases} x_1 x_0 + y_1 y_0 + z_1 z_0 = 0(1) \\ x_2 x_0 + y_2 y_0 + z_2 z_0 = 0(2) \end{cases}$$

Это условия 1.

Но как быть? У нас два уравнения и 3 неизвестных. Поступим просто: введем еще один вектор d:

 $\vec{c} = x\vec{a} + \vec{d} + y\vec{b}$, тогда уравнения в системе станут такими:

$$(x(\vec{a}) + (\vec{d}) + y(\vec{b})) * (\vec{a}) = 0(1)$$

$$(x(\vec{a}) + (\vec{d}) + y(\vec{b})) * (\vec{b}) = 0(2)$$

Приведя все подобные члены, получим выражения со скалярными произведениями. Думаю, не стоит труда их посчитать.

$$M(3;0;3\sqrt{2}), L(-3;0;6\sqrt{2}), B(-3;0;0), A(0;3\sqrt{3};0)$$

$$M(3;0;3\sqrt{2}),L(-3;0;6\sqrt{2}),B(-3;0;0),A(0;3\sqrt{3};0)$$
 Тогда $\overrightarrow{ML}(-6;0;3\sqrt{2})=\vec{a};\overrightarrow{AB}(-3;-3\sqrt{3};0)=\vec{b};\overrightarrow{LA}(3;3\sqrt{3};-6\sqrt{2})=\vec{d}$

Отельно посчитаем их скалярные произведения:

$$\vec{a} * \vec{b} = 36 + 0 + 18 = 54$$

 $\vec{a} * \vec{a} = 9 + 27 + 0 = 36$

$$\vec{b} * \vec{b} = 9 + 27 + 72 = 108$$

$$\vec{d} * \vec{d} = 18 + 0 + 0 = 18$$

$$\vec{a} * \vec{d} = -9 - 27 + 0 = -36$$

$$\vec{b} * \vec{d} = -18 + 0 - 36 = -54$$

Тогда получим х и у (подставляя и приведя подобные члены)

і) Найдите угол между плоскостями AML и AKL

Способ 1

1)В начале поймем, какой вид у \triangle -ка ALK:

$$LK = \sqrt{\frac{4}{9} * 9^2 * 2 + 9} = 9$$

$$Al = \sqrt{\frac{4}{9} * 9^2 * 2 + 36} = 6\sqrt{3}$$

$$AK = 3\sqrt{3}$$

2) Легко заметить, что $AK^2+LK^2=AL^2$, т.е. по обр
 Th Пифагора $\triangle-ALK$ - прямо-угольный, где $\angle K=90^\circ$

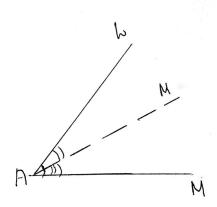
Кстати, это можно было и сразу заметить: $AK \perp BB_1C_1$; $LK \subset BB_1C_1$

 $AML \cap AKL = AL$ и если \bot из точки M на сторону AL проходит ч/з ее середину ($\triangle AKM$ -р/б), то для вершины K $\triangle - ALK$ это не так ($\triangle - ALK$ - не р/б)

Поэтому построить линейный угол ДУ KALM весьма затруднительно, в смысле поиска его величины (Построить-то его можно).

3) Для того, чтобы построить этот угол, нужно выпустить 2 \perp из любой точки AL, так, чтобы они содержались в плоскостях ALK и ALM.

1)В таких затруднительных ситуациях лучше всего выручает Тh соз для ТУ:



 $\cos \angle MAK = \cos \angle KAL * \cos \angle MAL + \sin \angle KAL * \sin \angle MAL * \cos \angle KALM$

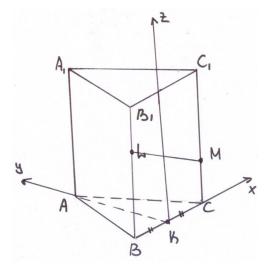
2) Заметим, что \triangle -к AMK - p/б по тем же соображениям, что и \triangle AKL $\cos \angle MAK = \frac{AK}{AM} = \frac{3\sqrt{3}}{3\sqrt{6}} = \frac{1}{\sqrt{2}}$

$$\cos \angle KAL = \frac{AK}{AL} = \frac{3\sqrt{3}}{6\sqrt{3} = \frac{1}{2}}$$

$$\cos\angle MAL = AMAL = \frac{3\sqrt{3}}{6\sqrt{3}} = \frac{\sqrt{2}}{2}$$
 Также посчитать sin не составляет труда.

3)Имеем: $\frac{1}{\sqrt{2}} = \frac{1}{2} * \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2} * \frac{\sqrt{2}}{2} * \cos \angle KALM$, т.е. $\frac{\sqrt{2}}{2} = \frac{\sqrt{6}}{2} * \cos \angle KALM$, т.е. $\cos \angle KALM = \angle AML$; $AKL = \arccos \frac{1}{\sqrt{3}}$

Otbet: $\frac{1}{\sqrt{3}}$



1)Обратимся к МК. Сведем задачу о нахождении угла между плоскостями к задаче о плоских углах между нормалями к этим плоскостям.

2) Все данные берем из пунктов ранее: $L(-3;0;6\sqrt{2}); M(3;0;3\sqrt{2};A(0;3\sqrt{3};0)$

3) Уравнение плоскости ALM : sc + by + cz + d = 0

$$\begin{cases} L: -3a + 6\sqrt{2}c + d = 0 \\ M: 3a + 3\sqrt{2}c + d = 0 \\ A: 3\sqrt{3}b + d = 0 \end{cases} \begin{cases} -9a = d \\ -9\sqrt{2}c = 2d \\ 3\sqrt{3}b = d \end{cases}$$

Уравнение плоскости , сразу сокращая на d: $\frac{x}{9} + \frac{y}{3\sqrt{3}} + \frac{\sqrt{2}}{9} - 1 = 0$ т.е. $\vec{n}_1(\frac{1}{9};\frac{1}{3\sqrt{3}};\frac{\sqrt{2}}{9})$

4) Полностью аналогичные рассуждения для AKL: $K(0;0;0); L(-3;0;6\sqrt{2}$ ax+by+cz+d=0

$$\begin{cases} L: -3a + 6\sqrt{2}c + d = 0 \\ K: d = 0 \\ A: 3\sqrt{3}b + d = 0 \end{cases} \begin{cases} a = 2\sqrt{2}c \\ d = 0 \\ b = 0 \end{cases}$$

Уравнение плоскости , сразу сокращая на d:

$$2\sqrt{2}x + z = 0$$

T.e. $\vec{n}_2(2\sqrt{2}; 0; 1)$

5)
$$|\cos \angle(\vec{n}_1; \vec{n}_2)| = |\frac{\vec{n}_1 * \vec{n}_2}{|\vec{n}_1| * |\vec{n}_2|}| = \frac{\sqrt{3}}{3} = \frac{1}{\sqrt{3}}$$

T.e. $\cos \angle(AML; AKL) = (\pi - \cos \angle(\vec{n}_1; \vec{n}_2)) = \arccos \frac{1}{\sqrt{3}}$